Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.819
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 116, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566123

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) is a serious complication in patients with type 1 diabetes mellitus (T1DM), which still lacks adequate therapy. Irisin, a cleavage peptide off fibronectin type III domain-containing 5, has been shown to preserve cardiac function in cardiac ischemia-reperfusion injury. Whether or not irisin plays a cardioprotective role in DCM is not known. METHODS AND RESULTS: T1DM was induced by multiple low-dose intraperitoneal injections of streptozotocin (STZ). Our current study showed that irisin expression/level was lower in the heart and serum of mice with STZ-induced TIDM. Irisin supplementation by intraperitoneal injection improved the impaired cardiac function in mice with DCM, which was ascribed to the inhibition of ferroptosis, because the increased ferroptosis, associated with increased cardiac malondialdehyde (MDA), decreased reduced glutathione (GSH) and protein expressions of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), was ameliorated by irisin. In the presence of erastin, a ferroptosis inducer, the irisin-mediated protective effects were blocked. Mechanistically, irisin treatment increased Sirtuin 1 (SIRT1) and decreased p53 K382 acetylation, which decreased p53 protein expression by increasing its degradation, consequently upregulated SLC7A11 and GPX4 expressions. Thus, irisin-mediated reduction in p53 decreases ferroptosis and protects cardiomyocytes against injury due to high glucose. CONCLUSION: This study demonstrated that irisin could improve cardiac function by suppressing ferroptosis in T1DM via the SIRT1-p53-SLC7A11/GPX4 pathway. Irisin may be a therapeutic approach in the management of T1DM-induced cardiomyopathy.


Assuntos
Diabetes Mellitus Tipo 1 , Cardiomiopatias Diabéticas , Ferroptose , Humanos , Animais , Camundongos , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/prevenção & controle , Sirtuína 1 , Fibronectinas , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Proteína Supressora de Tumor p53 , Miócitos Cardíacos
2.
Clin Epigenetics ; 16(1): 52, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581056

RESUMO

Diabetic cardiomyopathy (DCM) is a critical complication that poses a significant threat to the health of patients with diabetes. The intricate pathological mechanisms of DCM cause diastolic dysfunction, followed by impaired systolic function in the late stages. Accumulating researches have revealed the association between DCM and various epigenetic regulatory mechanisms, including DNA methylation, histone modifications, non-coding RNAs, and other epigenetic molecules. Recently, a profound understanding of epigenetics in the pathophysiology of DCM has been broadened owing to advanced high-throughput technologies, which assist in developing potential therapeutic strategies. In this review, we briefly introduce the epigenetics regulation and update the relevant progress in DCM. We propose the role of epigenetic factors and non-coding RNAs (ncRNAs) as potential biomarkers and drugs in DCM diagnosis and treatment, providing a new perspective and understanding of epigenomics in DCM.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Cardiomiopatias Diabéticas/genética , Metilação de DNA , Epigenômica , Epigênese Genética , Código das Histonas , Diabetes Mellitus/genética
3.
Sheng Li Xue Bao ; 76(1): 128-136, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38444138

RESUMO

Cardiovascular complications are the leading cause of death in diabetic patients. Among them, diabetic cardiomyopathy (DCM) is a type of specific cardiomyopathy excluding myocardial damage caused by hypertension and coronary heart disease. It is characterized by abnormal metabolism of cardiomyocytes and gradual decline of cardiac function. The clinical manifestations of DCM are impaired diastolic function in early stage and impaired systolic function in late stage. Eventually it developed into heart failure. Mitochondria are the main organelles that provide energy in cardiomyocytes. Mitochondrial dynamics refers to the dynamic process of mitochondrial fusion and fission, which is an important approach for mitochondrial quality control. Mitochondrial dynamics plays a crucial role in maintaining mitochondrial homeostasis and cardiac function. The proteins that regulate mitochondrial fission are mainly Drp1 and its receptors, Fis1, MFF, MiD49 and MiD51. The protein that performs mitochondrial outer membrane fusion is Mfn1/2, and the inner membrane fusion protein is Opa1. This paper reviews recent progress on mitochondrial dynamics in DCM. The main contents are as follows: mitochondrial dynamics imbalance in both type 1 and 2 DCM is manifested as increased fission and inhibited fusion. The molecular mechanism of the former is mainly associated with up-regulated Drp1 and down-regulated Opa1, while the molecular mechanism of the latter is mainly associated with up-regulated Drp1 and down-regulated Mfn1/2. Increased mitochondrial fission and inhibited fusion can lead to mitochondrial dysfunction and promote the development of DCM. The active ingredients of the traditional Chinese medicine such as punicalagin, paeonol and endogenous substance melatonin can improve mitochondrial function and alleviate the symptoms of DCM by inhibiting mitochondrial fission or promoting mitochondrial fusion. This article is helpful to further understand the role and mechanism of mitochondrial dynamics in DCM, and provide new treatment methods and intervention strategies for clinical DCM patients based on mitochondrial dynamics.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Insuficiência Cardíaca , Humanos , Dinâmica Mitocondrial , Miocárdio , Homeostase , Proteínas de Membrana
4.
Front Endocrinol (Lausanne) ; 15: 1185062, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469146

RESUMO

Background: Diabetic cardiomyopathy (DCM) lacks specific and sensitive biomarkers, and its diagnosis remains a challenge. Therefore, there is an urgent need to develop useful biomarkers to help diagnose and evaluate the prognosis of DCM. This study aims to find specific diagnostic markers for diabetic cardiomyopathy. Methods: Two datasets (GSE106180 and GSE161827) from the GEO database were integrated to identify differentially expressed genes (DEGs) between control and type 2 diabetic cardiomyopathy. We assessed the infiltration of immune cells and used weighted coexpression network analysis (WGCNA) to construct the gene coexpression network. Then we performed a clustering analysis. Finally, a diagnostic model was built by the least absolute shrinkage and selection operator (LASSO). Results: A total of 3066 DEGs in the GSE106180 and GSE161827 datasets. There were differences in immune cell infiltration. According to gene significance (GS) > 0.2 and module membership (MM) > 0.8, 41 yellow Module genes and 1474 turquoise Module genes were selected. Hub genes were mainly related to the "proteasomal protein catabolic process", "mitochondrial matrix" and "protein processing in endoplasmic reticulum" pathways. LASSO was used to construct a diagnostic model composed of OXCT1, CACNA2D2, BCL7B, EGLN3, GABARAP, and ACADSB and verified it in the GSE163060 and GSE175988 datasets with AUCs of 0.9333 (95% CI: 0.7801-1) and 0.96 (95% CI: 0.8861-1), respectively. H9C2 cells were verified, and the results were similar to the bioinformatics analysis. Conclusion: We constructed a diagnostic model of DCM, and OXCT1, CACNA2D2, BCL7B, EGLN3, GABARAP, and ACADSB were potential biomarkers, which may provide new insights for improving the ability of early diagnosis and treatment of diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Cardiomiopatias Diabéticas/diagnóstico , Cardiomiopatias Diabéticas/genética , Biomarcadores , Área Sob a Curva , Análise por Conglomerados , Biologia Computacional , Fatores de Transcrição
5.
Int J Med Sci ; 21(4): 612-622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464828

RESUMO

Diabetic cardiomyopathy (DC) is a pathophysiologic condition caused by diabetes mellitus (DM) in the absence of coronary artery disease, valvular heart disease, and hypertension that can lead to heart failure (HF), manifesting itself in the early stages with left ventricular hypertrophy and diastolic dysfunction, with marked HF and decreased systolic function in the later stages. There is still a lack of direct evidence to prove the exact existence of DC. Ferroptosis is a novel form of cell death characterized by reactive oxygen species (ROS) accumulation and lipid peroxidation. Several cell and animal studies have shown that ferroptosis is closely related to DC progression. This review systematically summarizes the related pathogenic mechanisms of ferroptosis in DC, including the reduction of cardiac RDH10 induced ferroptosis in DC cardiomyocytes which mediated by retinol metabolism disorders; CD36 overexpression caused lipid deposition and decreased GPX4 expression in DC cardiomyocytes, leading to the development of ferroptosis; Nrf2 mediated iron overload and lipid peroxidation in DC cardiomyocytes and promoted ferroptosis; lncRNA-ZFAS1 as a ceRNA, combined with miR-150-5p to inhibit CCND2 expression in DC cardiomyocytes, thereby triggering ferroptosis.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Ferroptose , Insuficiência Cardíaca , Animais , Cardiomiopatias Diabéticas/genética , Ferroptose/genética , Morte Celular , Miócitos Cardíacos , Espécies Reativas de Oxigênio , Diabetes Mellitus/genética
6.
Nutrients ; 16(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542759

RESUMO

Previous studies have reported the therapeutic effects of oleuropein (OP) consumption on the early stage of diabetic nephropathy and diabetic cardiomyopathy. However, the efficacy of OP on the long-course of these diabetes complications has not been investigated. Therefore, in this study, to investigate the relieving effects of OP intake on these diseases, and to explore the underlying mechanisms, db/db mice (17-week-old) were orally administrated with OP (200 mg/kg bodyweight) for 15 weeks. We found that OP reduced expansion of the glomerular mesangial matrix, renal inflammation, renal fibrosis, and renal apoptosis. Meanwhile, OP treatment exerted cardiac anti-fibrotic, anti-inflammatory, and anti-apoptosis effects. Notably, transcriptomic and bioinformatic analyses indicated 290 and 267 differentially expressed genes in the kidney and heart replying to OP treatment, respectively. For long-course diabetic nephropathy, OP supplementation significantly upregulated the cyclic guanosine monophosphate-dependent protein kinase (cGMP-PKG) signaling pathway. For long-course diabetic cardiomyopathy, p53 and cellular senescence signaling pathways were significantly downregulated in response to OP supplementation. Furthermore, OP treatment could significantly upregulate the transcriptional expression of the ATPase Na+/K+ transporting subunit alpha 3, which was enriched in the cGMP-PKG signaling pathway. In contrast, OP treatment could significantly downregulate the transcriptional expressions of cyclin-dependent kinase 1, G two S phase expressed protein 1, and cyclin B2, which were enriched in p53 and cellular senescence signal pathways; these genes were confirmed by qPCR validation. Overall, our findings demonstrate that OP ameliorated long-course diabetic nephropathy and cardiomyopathy in db/db mice and highlight the potential benefits of OP as a functional dietary supplement in diabetes complications treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Nefropatias Diabéticas , Glucosídeos Iridoides , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/complicações , Proteína Supressora de Tumor p53/metabolismo , Rim/metabolismo
7.
Cell Stress Chaperones ; 29(2): 272-284, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485044

RESUMO

Long-term hyperglycemia can lead to diabetic cardiomyopathy (DCM), a main lethal complication of diabetes. However, the mechanisms underlying DCM development have not been fully elucidated. Heat shock protein A12A (HSPA12A) is the atypic member of the Heat shock 70kDa protein family. In the present study, we found that the expression of HSPA12A was upregulated in the hearts of mice with streptozotocin-induced diabetes, while ablation of HSPA12A improved cardiac systolic and diastolic dysfunction and increased cumulative survival of diabetic mice. An increased expression of HSPA12A was also found in H9c2 cardiac cells following treatment with high glucose (HG), while overexpression of HSPA12A-enhanced the HG-induced cardiac cell death, as reflected by higher levels of propidium iodide cells, lactate dehydrogenase leakage, and caspase 3 cleavage. Moreover, the HG-induced increase of oxidative stress, as indicated by dihydroethidium staining, was exaggerated by HSPA12A overexpression. Further studies demonstrated that the HG-induced increases of protein kinase B and forkhead box transcription factors 1 phosphorylation were diminished by HSPA12A overexpression, while pharmacologically inhibition of protein kinase B further enhanced the HG-induced lactate dehydrogenase leakage in HSPA12A overexpressed cardiac cells. Together, the results suggest that hyperglycemia upregulated HSPA12A expression in cardiac cells, by which induced cell death to promote DCM development. Targeting HSPA12A may serve as a potential approach for DCM management.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Hiperglicemia , Camundongos , Animais , Proteínas de Choque Térmico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/complicações , Cardiomiopatias Diabéticas/metabolismo , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Lactato Desidrogenases/metabolismo , Miócitos Cardíacos/metabolismo
9.
PLoS One ; 19(3): e0297848, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547044

RESUMO

Diabetic cardiomyopathy (DCM) is a major factor in the development of heart failure. Mitochondria play a crucial role in regulating insulin resistance, oxidative stress, and inflammation, which affect the progression of DCM. Regular exercise can induce altered non-coding RNA (ncRNA) expression, which subsequently affects gene expression and protein function. The mechanism of exercise-induced mitochondrial-related non-coding RNA network in the regulation of DCM remains unclear. This study seeks to construct an innovative exercise-induced mitochondrial-related ncRNA network. Bioinformatic analysis of RNA sequencing data from an exercise rat model identified 144 differentially expressed long non-coding RNA (lncRNA) with cutoff criteria of p< 0.05 and fold change ≥1.0. GSE6880 and GSE4745 were the differentially expressed mRNAs from the left ventricle of DCM rat that downloaded from the GEO database. Combined with the differentially expressed mRNA and MitoCarta 3.0 dataset, the mitochondrial located gene Pdk4 was identified as a target gene. The miRNA prediction analysis using miRanda and TargetScan confirmed that 5 miRNAs have potential to interact with the 144 lncRNA. The novel lncRNA-miRNA-Pdk4 network was constructed for the first time. According to the functional protein association network, the newly created exercise-induced ncRNA network may serve as a promising diagnostic marker and therapeutic target, providing a fresh perspective to understand the molecular mechanism of different exercise types for the prevention and treatment of diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , MicroRNAs , RNA Longo não Codificante , Ratos , Animais , Cardiomiopatias Diabéticas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Redes Reguladoras de Genes
10.
Pathol Res Pract ; 256: 155225, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442448

RESUMO

Diabetic cardiomyopathy, a multifaceted complication of diabetes mellitus, remains a major challenge in clinical management due to its intricate pathophysiology. Emerging evidence underscores the pivotal role of autophagy dysregulation in the progression of diabetic cardiomyopathy, providing a novel avenue for therapeutic intervention. Noncoding RNAs (ncRNAs), a diverse class of regulatory molecules, have recently emerged as promising candidates for targeted therapeutic strategies. The exploration of various classes of ncRNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) reveal their intricate regulatory networks in modulating autophagy and influencing the pathophysiological processes associated with diabetic cardiomyopathy. The nuanced understanding of the molecular mechanisms underlying ncRNA-mediated autophagic regulation offers a rationale for the development of precise and effective therapeutic interventions. Harnessing the regulatory potential of ncRNAs presents a promising frontier for the development of targeted and personalized therapeutic strategies, aiming to ameliorate the burden of diabetic cardiomyopathy in affected individuals. As research in this field advances, the identification and validation of specific ncRNA targets hold immense potential for the translation of these findings into clinically viable interventions, ultimately improving outcomes for patients with diabetic cardiomyopathy. This review encapsulates the current understanding of the intricate interplay between autophagy and diabetic cardiomyopathy, with a focus on the potential of ncRNAs as therapeutic targets.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , MicroRNAs , RNA Longo não Codificante , Humanos , Cardiomiopatias Diabéticas/genética , RNA não Traduzido/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Autofagia/genética
11.
Nutr Diabetes ; 14(1): 10, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472186

RESUMO

BACKGROUND: The gut microbiota is involved in the pathogenesis of diabetic cardiomyopathy (DCM). Myricetin protects cardiac function in DCM. However, the low bioavailability of myricetin fails to explain its pharmacological mechanisms thoroughly. Research has shown that myricetin has a positive effect on the gut microbiota. We hypothesize that myricetin improves the development of DCM via regulating gut microbiota. METHODS: DCM mice were induced with streptozotocin and fed a high-fat diet, and then treated with myricetin by gavage and high-fat diet for 16 weeks. Indexes related to gut microbiota composition, cardiac structure, cardiac function, intestinal barrier function, and inflammation were detected. Moreover, the gut contents were transplanted to DCM mice, and the effect of fecal microbiota transplantation (FMT) on DCM mice was assessed. RESULTS: Myricetin could improve cardiac function in DCM mice by decreasing cardiomyocyte hypertrophy and interstitial fibrosis. The composition of gut microbiota, especially for short-chain fatty acid-producing bacteria involving Roseburia, Faecalibaculum, and Bifidobacterium, was more abundant by myricetin treatment in DCM mice. Myricetin increased occludin expression and the number of goblet cells in DCM mice. Compared with DCM mice unfed with gut content, the cardiac function, number of goblet cells, and expression of occludin in DCM mice fed by gut contents were elevated, while cardiomyocyte hypertrophy and TLR4/MyD88 pathway-related proteins were decreased. CONCLUSIONS: Myricetin can prevent DCM development by increasing the abundance of beneficial gut microbiota and restoring the gut barrier function.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Flavonoides , Microbioma Gastrointestinal , Animais , Camundongos , Ocludina/farmacologia , Hipertrofia , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica
12.
Immun Inflamm Dis ; 12(3): e1191, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38477658

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) represents a major cause of heart failure and a large medical burden worldwide. This study screened the potentially regulatory targets of DCM and analyzed their roles in high glucose (HG)-induced cardiomyocyte injury. METHODS: Through GEO database, we obtained rat DCM expression chips and screened differentially expressed genes. Rat cardiomyocytes (H9C2) were induced with HG. 3-hydroxy-3-methylglutarylcoenzyme A synthase 2 (Hmgcs2) and microRNA (miR)-363-5p expression patterns in cells were measured by real-time quantitative polymerase chain reaction or Western blot assay, with the dual-luciferase assay to analyze their binding relationship. Then, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, lactate dehydrogenase assay, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, enzyme-linked immunosorbent assay, and various assay kits were applied to evaluate cell viability, cytotoxicity, apoptosis, inflammation responses, and oxidative burden. RESULTS: Hmgcs2 was the vital hub gene in DCM. Hmgcs2 was upregulated in HG-induced cardiomyocytes. Hmgcs2 downregulation increased cell viability, decreased TUNEL-positive cell number, reduced HG-induced inflammation and oxidative stress. miR-363-5p is the upstream miRNA of Hmgcs2. miR-363-5p overexpression attenuated HG-induced cell injury. CONCLUSIONS: Hmgcs2 had the most critical regulatory role in DCM. We for the first time reported that miR-363-5p inhibited Hmgcs2 expression, thereby alleviating HG-induced cardiomyocyte injury.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , MicroRNAs , Animais , Ratos , Miócitos Cardíacos , Inflamação , Glucose
13.
Cardiovasc Diabetol ; 23(1): 96, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486199

RESUMO

Diabetic cardiomyopathy (DCM) is a major contributor to mortality in diabetic patients, characterized by a multifaceted pathogenesis and limited therapeutic options. While lactate, a byproduct of glycolysis, is known to be significantly elevated in type 2 diabetes, its specific role in DCM remains uncertain. This study reveals an abnormal upregulation of monocarboxylate transporter 4 (MCT4) on the plasma membrane of cardiomyocytes in type 2 diabetes, leading to excessive lactate efflux from these cells. The disruption in lactate transport homeostasis perturbs the intracellular lactate-pyruvate balance in cardiomyocytes, resulting in oxidative stress and inflammatory responses that exacerbate myocardial damage. Additionally, our findings suggest increased lactate efflux augments histone H4K12 lactylation in macrophages, facilitating inflammatory infiltration within the microenvironment. In vivo experiments have demonstrated that inhibiting MCT4 effectively alleviates myocardial oxidative stress and pathological damage, reduces inflammatory macrophage infiltration, and enhances cardiac function in type 2 diabetic mice. Furthermore, a clinical prediction model has been established, demonstrating a notable association between peripheral blood lactate levels and diastolic dysfunction in individuals with type 2 diabetes. This underscores the potential of lactate as a prognostic biomarker for DCM. Ultimately, our findings highlight the pivotal involvement of MCT4 in the dysregulation of cardiac energy metabolism and macrophage-mediated inflammation in type 2 diabetes. These insights offer novel perspectives on the pathogenesis of DCM and pave the way for the development of targeted therapeutic strategies against this debilitating condition.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Animais , Humanos , Camundongos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Metabolismo Energético , Inflamação , Ácido Láctico/metabolismo , Modelos Estatísticos , Prognóstico
14.
Theranostics ; 14(5): 2246-2264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505620

RESUMO

Aim: Adipose tissue (AT) dysfunction that occurs in both obesity and lipodystrophy is associated with the development of cardiomyopathy. However, it is unclear how dysfunctional AT induces cardiomyopathy due to limited animal models available. We have identified vacuolar H+-ATPase subunit Vod1, encoded by Atp6v0d1, as a master regulator of adipogenesis, and adipose-specific deletion of Atp6v0d1 (Atp6v0d1AKO) in mice caused generalized lipodystrophy and spontaneous cardiomyopathy. Using this unique animal model, we explore the mechanism(s) underlying lipodystrophy-related cardiomyopathy. Methods and Results: Atp6v0d1AKO mice developed cardiac hypertrophy at 12 weeks, and progressed to heart failure at 28 weeks. The Atp6v0d1AKO mouse hearts exhibited excessive lipid accumulation and altered lipid and glucose metabolism, which are typical for obesity- and diabetes-related cardiomyopathy. The Atp6v0d1AKO mice developed cardiac insulin resistance evidenced by decreased IRS-1/2 expression in hearts. Meanwhile, the expression of forkhead box O1 (FoxO1), a transcription factor which plays critical roles in regulating cardiac lipid and glucose metabolism, was increased. RNA-seq data and molecular biological assays demonstrated reduced expression of myocardin, a transcription coactivator, in Atp6v0d1AKO mouse hearts. RNA interference (RNAi), luciferase reporter and ChIP-qPCR assays revealed the critical role of myocardin in regulating IRS-1 transcription through the CArG-like element in IRS-1 promoter. Reducing IRS-1 expression with RNAi increased FoxO1 expression, while increasing IRS-1 expression reversed myocardin downregulation-induced FoxO1 upregulation in cardiomyocytes. In vivo, restoring myocardin expression specifically in Atp6v0d1AKO cardiomyocytes increased IRS-1, but decreased FoxO1 expression. As a result, the abnormal expressions of metabolic genes in Atp6v0d1AKO hearts were reversed, and cardiac dysfunctions were ameliorated. Myocardin expression was also reduced in high fat diet-induced diabetic cardiomyopathy and palmitic acid-treated cardiomyocytes. Moreover, increasing systemic insulin resistance with rosiglitazone restored cardiac myocardin expression and improved cardiac functions in Atp6v0d1AKO mice. Conclusion: Atp6v0d1AKO mice are a novel animal model for studying lipodystrophy- or metabolic dysfunction-related cardiomyopathy. Moreover, myocardin serves as a key regulator of cardiac insulin sensitivity and metabolic homeostasis, highlighting myocardin as a potential therapeutic target for treating lipodystrophy- and diabetes-related cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas , Insuficiência Cardíaca , Resistência à Insulina , Lipodistrofia , Proteínas Nucleares , Transativadores , ATPases Vacuolares Próton-Translocadoras , Animais , Camundongos , Cardiomiopatias Diabéticas/genética , Modelos Animais de Doenças , Glucose/metabolismo , Resistência à Insulina/genética , Lipídeos , Obesidade/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo
15.
Cell Biochem Funct ; 42(2): e3968, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38439590

RESUMO

Over the past decade, the prevalence of diabetes has increased significantly worldwide, leading to an increase in vascular complications of diabetes (VCD), such as diabetic cardiomyopathy (DCM), diabetic nephropathy (DN), and diabetic retinopathy (DR). Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long Noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), play a key role in cellular processes, including the pathophysiology of diabetes and VCD via pyroptosis. ncRNAs (e.g., miR-17, lnc-MEG3, and lnc-KCNQ1OT1) can regulate pyroptosis in pancreatic ß cells. Some ncRNAs are involved in VCD progression. For example, miR-21, lnc-KCNQ1OT1, lnc-GAS5, and lnc-MALAT1 were reported in DN and DCM, and lnc-MIAT was identified in DCM and DR. Herein, this review aimed to summarize recent research findings related to ncRNAs-mediated pyroptosis at the onset and progression of diabetes and VCD.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Nefropatias Diabéticas , MicroRNAs , Humanos , Piroptose , Cardiomiopatias Diabéticas/genética , Nefropatias Diabéticas/genética , RNA não Traduzido/genética , MicroRNAs/genética , Diabetes Mellitus/genética
16.
J Cell Mol Med ; 28(7): e18158, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494853

RESUMO

The increasing attention towards diabetic cardiomyopathy as a distinctive complication of diabetes mellitus has highlighted the need for standardized diagnostic criteria and targeted treatment approaches in clinical practice. Ongoing research is gradually unravelling the pathogenesis of diabetic cardiomyopathy, with a particular emphasis on investigating various post-translational modifications. These modifications dynamically regulate protein function in response to changes in the internal and external environment, and their disturbance of homeostasis holds significant relevance for the development of chronic ailments. This review provides a comprehensive overview of the common post-translational modifications involved in the initiation and progression of diabetic cardiomyopathy, including O-GlcNAcylation, phosphorylation, methylation, acetylation and ubiquitination. Additionally, the review discusses drug development strategies for targeting key post-translational modification targets, such as agonists, inhibitors and PROTAC (proteolysis targeting chimaera) technology that targets E3 ubiquitin ligases.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Cardiomiopatias Diabéticas/genética , Processamento de Proteína Pós-Traducional , Ubiquitinação , Fosforilação , Ubiquitina-Proteína Ligases/metabolismo
17.
Ann Clin Lab Sci ; 54(1): 17-25, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38514055

RESUMO

OBJECTIVE: Diabetic cardiomyopathy (DCM) is the most common cardiovascular complication of type 2 diabetes mellitus (T2DM). Patients affected with DCM face a notably higher risk of progressing to congestive heart failure compared to other populations. Myocardial hypertrophy, a clearly confirmed pathological change in DCM, plays an important role in the development of DCM, with abnormal Ca2+ homeostasis serving as the key signal to induce myocardial hypertrophy. Therefore, investigating the mechanism of Ca2+ transport is of great significance for the prevention and treatment of myocardial hypertrophy in T2DM. METHODS: The rats included in the experiment were divided into wild type (WT) group and T2DM group. The T2DM rat model was established by feeding the rats with high-fat and high-sugar diets for three months combined with low dose of streptozotocin (100mg/kg). Afterwards, primary rat cardiomyocytes were isolated and cultured, and cardiomyocyte hypertrophy was induced through high-glucose treatment. Subsequently, mechanistic investigations were carried out through transfection with si-STIM1 and oe-STIM1. Western blot (WB) was used to detect the expression of the STIM1, Orai1 and p-CaMKII. qRT-PCR was used to detect mRNA levels of myocardial hypertrophy marker proteins. Cell surface area was detected using TRITC-Phalloidin staining, and intracellular Ca2+ concentration in cardiomyocytes was measured using Fluo-4 fluorescence staining. RESULTS: Through animal experiments, an upregulation of Orai1 and STIM1 was revealed in the rat model of myocardial hypertrophy induced by T2DM. Meanwhile, through cell experiments, it was found that in high glucose (HG)-induced hypertrophic cardiomyocytes, the expression of STIM1, Orai1, and p-CaMKII was upregulated, along with increased levels of store-operated Ca2+ entry (SOCE) and abnormal Ca2+ homeostasis. However, when STIM1 was downregulated in HG-induced cardiomyocytes, SOCE levels decreased and p-CaMKII was downregulated, resulting in an improvement in myocardial hypertrophy. To further elucidate the mechanism of action involving SOCE and CaMKII in T2DM-induced myocardial hypertrophy, high-glucose cardiomyocytes were respectively treated with BTP2 (SOCE blocker) and KN-93 (CaMKII inhibitor), and the results showed that STIM1 can mediate SOCE, thereby affecting the phosphorylation level of CaMKII and improving cardiomyocyte hypertrophy. CONCLUSION: STIM1/Orai1-mediated SOCE regulates p-CaMKII levels, thereby inducing myocardial hypertrophy in T2DM.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cálcio , Cardiomegalia , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Glucose , Proteína ORAI1 , Molécula 1 de Interação Estromal , Animais , Ratos , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Glucose/metabolismo , Glucose/farmacologia , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Regulação para Cima , Cardiomiopatias Diabéticas/complicações , Ratos Sprague-Dawley , Masculino
18.
BMC Genomics ; 25(1): 312, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532337

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) is becoming a very well-known clinical entity and leads to increased heart failure in diabetic patients. Long non-coding RNAs (LncRNAs) play an important role in the pathogenesis of DCM. In the present study, the expression profiles of lncRNAs and mRNAs were illuminated in myocardium from DCM mice, with purpose of exploring probable pathological processes of DCM involved by differentially expressed genes in order to provide a new direction for the future researches of DCM. RESULTS: The results showed that a total of 93 differentially expressed lncRNA transcripts and 881 mRNA transcripts were aberrantly expressed in db/db mice compared with the controls. The top 6 differentially expressed lncRNAs like up-regulated Hmga1b, Gm8909, Gm50252 and down-regulated Msantd4, 4933413J09Rik, Gm41414 have not yet been reported in DCM. The lncRNAs-mRNAs co-expression network analysis showed that LncRNA 2610507I01Rik, 2310015A16Rik, Gm10503, A930015D03Rik and Gm48483 were the most relevant to differentially expressed mRNAs. CONCLUSION: Our results showed that db/db DCM mice exist differentially expressed lncRNAs and mRNAs in hearts. These differentially expressed lncRNAs may be involved in the pathological process of cardiomyocyte apoptosis and fibrosis in DCM.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , RNA Longo não Codificante , Humanos , Camundongos , Animais , RNA Longo não Codificante/genética , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Perfilação da Expressão Gênica/métodos , Miocárdio/metabolismo , Biologia Computacional , RNA Mensageiro/genética , Redes Reguladoras de Genes , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia
19.
PLoS One ; 19(3): e0296792, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38452099

RESUMO

Chronic intermittent hypoxia (CIH) may play an important role in the development of diabetic cardiomyopathy (DCM). However, the exact mechanism of CIH-induced myocardial injury in DCM remains unclear. In vivo, the db/db mice exposed to CIH were established, and in vitro, the H9C2 cells were exposed to high glucose (HG) combined with intermittent hypoxia (IH). The body weight (BW), fasting blood glucose (FBG) and food intake were measured every two weeks. The glycolipid metabolism was assessed with the oral glucose tolerance test (OGTT) and insulin resistance (IR). Cardiac function was detected by echocardiography. Cardiac pathology was detected by HE staining, Masson staining, and transmission electron microscopy. The level of reactive oxygen species (ROS) in myocardial tissue was detected by dihydroethidium (DHE). The apoptosis was detected by TUNEL staining. The cell viability, ROS, and the mitochondrial membrane potential were detected by the cell counting kit-8 (CCK-8) assay and related kits. Western blotting was used to analyze the liver kinase B1/AMP-activated protein kinase/ nuclear factor-erythroid 2-related factor 2 (LKB1/AMPK/Nrf2) signaling pathway. CIH exposure accelerated glycolipid metabolism disorders and cardiac injury, and increased the level of cardiac oxidative stress and the number of positive apoptotic cells in db/db mice. IH and HG decreased the cell viability and the level of mitochondrial membrane potential, and increased ROS expression in H9C2 cells. These findings indicate that CIH exposure promotes glycolipid metabolism disorders and myocardial apoptosis, aggravating myocardial injury via the LKB1/AMPK/Nrf2 pathway in vitro and in vivo.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Hipóxia/metabolismo , Transdução de Sinais , Apoptose , Glicolipídeos
20.
Int Immunopharmacol ; 131: 111858, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38492336

RESUMO

BACKGROUND: Diabetes is a global health problem whose common complication is diabetic cardiomyopathy, characterized by chronic inflammation of the heart muscle. Macrophages are the main white blood cells found in the resting heart. Therefore, we investigated the underling mechanism of macrophage on myocardial fibrosis in diabetes. METHODS: Here, echocardiography was utilized to evaluate cardiac function, and the degree of myocardial fibrosis was assessed using Masson's trichrome staining, followed by single-cell RNA sequencing (scRNA-seq) to analyze the phenotype, function, developmental trajectory, and interactions between immune cells, endothelial cells (ECs), and fibroblasts (FBs) in the hearts of db/db mice at different stages of diabetes. Macrophages and cardiac fibroblasts were also co-cultured in order to study the signaling between macrophages and fibroblasts. RESULTS: We found that with the development of diabetes mellitus, myocardial hypertrophy and fibrosis occurred that was accompanied by cardiac dysfunction. A significant proportion of immune cells, endothelial cells, and fibroblasts were identified by RNA sequencing. The most significant changes observed were in macrophages, which undergo M1 polarization and are critical for oxidative stress and extracellular matrix (ECM) formation. We further found that M1 macrophages secreted interleukin-1ß (IL-1ß), which interacted with the receptor on the surface of fibroblasts, to cause myocardial fibrosis. In addition, crosstalk between M1 macrophages and endothelial cells also plays a key role in fibrosis and immune response regulation through IL-1ß and corresponding receptors. CONCLUSIONS: M1 macrophages mediate diabetic myocardial fibrosis through interleukin-1ß interaction with fibroblasts.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Camundongos , Animais , Interleucina-1beta , Células Endoteliais , Macrófagos , Fibrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...